Computational Flow Modeling of Multiphase Mechanically Agitated Reactors
نویسندگان
چکیده
Mixing and dispersion of solids and gases in liquids in mechanically agitated reactors is involved in about 80% of the operations in the chemical industries, including processes ranging from leaching and complete dissolution of reagents to suspension of catalysts and reaction products, such as precipitates and crystals (Smith, 1990). This is one of the most widely used unit operations because of its ability to provide excellent mixing and contact between the phases. An important aspect in the design of solids suspension in such reactors is the determination of the state of full particle suspension, at which point no particle remains in contact with the vessel bottom for more than 1 sec. Such a determination is critical because until such a condition is reached the total surface area of the particles is not efficiently utilized, and above this speed the rate of processes such as dissolution and ion exchange increases only slowly (Nienow, 1968). Despite their widespread use, the design and operation of these agitated reactors remain a challenging problem because of the complexity encountered due to the three-dimensional (3D) circulating and turbulent multiphase flow in the reactor. Mechanically agitated reactors involving solid–liquid flows exhibit three suspension states: complete suspension, homogeneous suspension and incomplete suspension, as depicted in Figure 1 (Kraume, 1992). A suspension is considered to be complete if no particle remains at rest at the bottom of the vessel for more than 1 or 2 sec. A homogeneous suspension is the state of solid suspension, where the local solid concentration is constant throughout the entire region of column. An incomplete suspension is the state, where the solids are deposited at the bottom of reactor. Hence, it is essential to determine the minimum impeller speed required for the state of complete off-bottom suspension of the solids, called the critical impeller speed. It is denoted by Njs for solid suspension in the absence of gas and by Njsg for solid suspension in the presence of gas. A considerable amount of research work has been carried out to determine the critical impeller speed starting with the pioneering work of Zwietering (1958) who
منابع مشابه
Multiphase flow and tromp curve simulation of dense medium cyclones using Computational Fluid Dynamics
Dense Medium Cyclone is a high capacity device that is widely used in coal preparation. It is simple in design but the swirling turbulent flow, the presence of medium and coal with different density and size fraction and the presence of the air-core make the flow pattern in DMCs complex. In this article the flow pattern simulation of DMC is performed with computational fluid dynamics and Fluent...
متن کاملCFD Modeling of Gas-Liquid Hydrodynamics in a Stirred Tank Reactor
Multiphase impeller stirred tank reactors enhance mixing of reacting species used in a variety of chemical industries. These reactors have been studied based on Computational Fluid Dynamics (CFD) that can be used in the analysis, design and scale up of these reactors. Most of the researches done in this area are limited to single phase reactors, and a few remaining two phase flow investigat...
متن کاملMultiphase Mass Transfer in Iron and Steel Refining Processes
In the present chapter, a computational fluid dynamics (CFD) model for multiphase flow was developed, allowing the simulation of two different processes, the desulfurization of hot metal in a ladle mechanically agitated by an impeller (KR process) and the desulfuri‐ zation of steel in a gas-agitated ladle. The model gives important information to charac‐ terize the fluid flow conditions, to def...
متن کاملNumerical modeling of three-phase flow through a Venturi meter using the LSSVM algorithm
One of the challenging problems in the Oil & Gas industry is accurate and reliable multiphase flow rate measurement in a three-phase flow. Application of methods with minimized uncertainty is required in the industry. Previous developed correlations for two-phase flow are complex and not capable of three-phase flow. Hence phase behavior identification in different conditions to designing and mo...
متن کاملDirect Numerical Simulation of Boiling Multiphase Flows: State-of-the-Art, Modeling, Algorithmic and Computer Needs
The state-of-the-art for Direct Numerical Simulation (DNS) of boiling multiphase flows is reviewed, focussing on potential of available computational techniques, the level of current success for their applications to model several basic flow regimes (film, pool-nucleate and wall-nucleate boiling – FB, PNB and WNB, respectively). Then, we discuss multiphysics and multiscale nature of practical b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012